Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER

Using a Simulation Framework to Study Spine Behaviors of Quadruped Robots

By Ingrid Fadelli , Tech Xplore | June 3, 2019

Researchers at the Robert Bosch center for cyber physical systems in Bangalore, India, have recently proposed a simulation framework to systematically study the effects of spinal joint actuation on the locomotion performance of quadruped robots. In their study, outlined in a paper pre-published on arXiv, they used this framework to investigate the spine behaviors of a quadruped robot called Stoch 2 and their effects on its bounding performance.

“This research came about while exploring the basis of fast locomotion in quadruped animals and robots, Shounak Bhattacharya, one of the researchers who carried out the study, told TechXplore. “It has been well known for some time now that small and medium-sized quadruped animals use the flexibility of their spine to improve their locomotion speed and energy efficiency. This use of flexibility inspired roboticists to explore the concept in more detail to find a solution to this problem using the mathematical tools available.”

Contrarily to previous researchers, Bhattacharya and his colleagues set out to investigate the spine behaviors of quadruped robots using machine learning techniques. The key objective of their study was to use deep reinforcement learning (D-RL) to realize the complex coordination between spine and legs in robots.

“In a D-RL framework, learning from scratch can lead to better and robust policies than incorporating human guidance,” Bhattacharya said. “However, learning from scratch involves multiple initial failures before the generation of working policy. In this work, over 2 million steps were required before an active and usable policy was obtained.”

For more information, see the video below.

Carrying out many trials directly on a robot’s hardware requires a vast amount of time and resources. The researchers thus decided to simulate the robot and its environment in PyBullet, a python module that enhances the Bullet physics engine with robotics and machine learning capabilities. In their study, they used PyBullet to evaluate the effects of spinal joint actuation on the bounding performance of Stoch 2, a 16-DOF quadruped spined robot.

“We trained the robot model in this environment and observed that the learning algorithm executed one complete training in 4 hours, when it is executed for a maximum of 10 million steps, on a PC powered by an Intel Core i7 at 3.5Ghz with 12 cores, and 32 GB RAM,” Bhattacharya said. “The use of a simulation framework reduced the time per training and removed the necessity to experiment on the hardware.”

Using PyBullet as a learning framework for their robot, the researchers attained very promising results. The findings they gathered during simulations suggest that the active use of the spine does, in fact, improve a robot‘s stride length and cost of transport, while also reducing the natural frequency to more realistic values. Ultimately, Stoch 2 achieved a bounding speed of 2.1 m/s, with a maximum Froude number of 2.

This study, supervised by four faculty members at the Indian Institute of Science: Shishir Kolathaya, Ashitava Ghosal, Bharadwaj Amrutur and Shalabh Bhatnagar, is part of a broader project called Walking Robot. In the future, it could inspire other researchers to use the same simulation framework to enhance their robots’ spine behaviors and the consequent locomotion performance.

“We obtained the coordination of the spine and leg through a D-RL based framework, which increased energy efficiency and speed of the quadruped,” Bhattacharya said. “It must be noted that all these behaviors were obtained from scratch without any understanding of the mechanics of the spine. In our future work, we plan to deploy the neural network on the hardware and execute the learned policy directly.”

You might also like


Filed Under: Wireless • 5G and more, Product design, Robotics • robotic grippers • end effectors

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Digitalization made easy: Bridging IT/OT with scalable network infrastructure
  • Apple Rubber custom o-rings for harsh underwater conditions
  • ASMPT chooses Renishaw for high-quality motion control
  • Innovating Together: How Italian Machine Builders Drive Industry Forward Through Collaboration
  • Efficiency Is the New Luxury — and Italy Is Delivering
  • Beyond the Build: How Italy’s Machine Makers Are Powering Smart Manufacturing
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.