Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Versatile Instrument to Scout for Kuiper Belt Objects

By NASA's Jet Propulsion Laboratory | March 4, 2016

Share

At the Palomar Observatory near San Diego, astronomers are busy tinkering with a high-tech instrument that could discover a variety of objects both far from Earth and closer to home.

The Caltech HIgh-speed Multi-color camERA (CHIMERA) system is looking for objects in the Kuiper Belt, the band of icy bodies beyond the orbit of Neptune that includes Pluto. It can also detect near-Earth asteroids and exotic forms of stars. Scientists at NASA’s Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena, are collaborating on this instrument.

“The Kuiper Belt is a pristine remnant of the formation of our solar system,” said Gregg Hallinan, CHIMERA principal investigator at Caltech. “By studying it, we can learn a large amount about how our solar system formed and how it’s continuing to evolve.”

The wide-field telescope camera system allows scientists to monitor thousands of stars simultaneously to see if a Kuiper Belt object passes in front of any of them. Such an object would diminish a star’s light for only one-tenth of a second while traveling by, meaning a camera has to be fast in order to capture it.

“Each of CHIMERA’s cameras will be taking 40 frames per second, allowing us to measure the distinct diffraction pattern in the wavelengths of light to which they are sensitive,” said Leon Harding, CHIMERA instrument scientist at JPL. “This high-speed imaging technique will enable us to find new Kuiper Belt objects far less massive in size than any other ground-based survey to date.”

Hallinan’s CHIMERA team at Caltech and JPL published a paper led by Harding describing the instrument this week in the Monthly Notices of the Royal Astronomical Society.

Astronomers are particularly interested in finding Kuiper Belt objects smaller than 0.6 miles (1 kilometer) in diameter. Since so few such objects have ever been found, scientists want to figure out how common they are, what they are made of and how they collide with other objects. The CHIMERA astronomers estimate that in the first 100 hours of CHIMERA data, they could find dozens of these small, distant objects.

Another scientific focus for CHIMERA is near-Earth asteroids, which the instrument can detect even if they are only about 30 feet (10 meters) across. Mike Shao of JPL, who leads the CHIMERA group’s near-Earth asteroid research effort, predicts that by using CHIMERA on the Hale telescope at Palomar, they could find several near-Earth objects per night of telescope observation.

Transient or pulsing objects such as binary star systems, pulsing white dwarfs and brown dwarfs can also be seen with CHIMERA.

“What makes CHIMERA unique is that it does high-speed, wide-field, multicolor imaging from the ground, and can be used for a wide variety of scientific purposes,” Hallinan said. “It’s the most sensitive instrument of its kind.”

CHIMERA uses detectors called electron multiplying charged-coupled devices (EMCCDs), making for an extremely high-sensitivity, low-noise camera system. One of the EMCCDs picks up near-infrared light, while the other picks up green and blue wavelengths, and the combination allows for a robust system of scanning perturbations in starlight. The detectors are capable of running at minus 148 degrees Fahrenheit (minus 100 degrees Celsius) in order to avoid noise when imaging fast objects.

“Not only can we image over a wide field, but in other modes we can also image objects rotating hundreds of times per second,” Harding said.

One of the objects the CHIMERA team used in testing the instrument’s imaging and timing abilities was the Crab Pulsar. This pulsar is the end result of a star whose mass collapsed at the end of its life. It weighs as much as our sun, but spins 32 times per second. The instrument focused on the pulsar for a 300-second exposure to produce a color image.

“Our camera can image the entire field of view at 40 frames per second,” Hallinan said. “We zoomed in on the pulsar and imaged it very fast, then imaged the rest of the scene slowly to create an aesthetically-pleasing image.”

Highlighting CHIMERA’s versatility, the instrument also imaged the globular cluster M22, located in the constellation Sagittarius toward the busy center of our galaxy. A single 25-millisecond image captured more than 1,000 stars. The team will be observing M22, and other fields like it, for 50 nights over three years, to look for signatures of Kuiper Belt objects.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design
Air Force Jet
How drones are advancing metrology for fighter jets

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

April 11, 2022
Going small with 3D printing
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings