Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

What are common ways to protect a sensor from harmful exposure?

By Randy Frank | May 31, 2017

Share

For a sensor, the amount of harmful exposure it receives from the environment and harmful constituents in the measuring process depends on what is being sensed and the environment itself. Different packaging is required to cope with and survive the specific situation. Two major considerations for protection are at the sensing element/transducer level or at the sensing module level.

Today, microelectromechanical systems (MEMS) technology provides many different types of sensing/transducer elements. MEMS sensors are based on integrated circuit/semiconductor processing. The differences in MEMS sensor packaging depends on sensors that are isolated from the environment and those that must specifically interact and come in contact with the measurand.

At the silicon level for MEMS devices, packaging approaches/technologies included over molded, exposed die surface and cavity designs. Packaging materials are commonly plastic for high-volume applications and for more demanding applications, metal can and ceramic materials are used.

In a factory environment, a sealed sensor package with minimum exposure to harsh chemicals, such as a sensor mounted on a printed circuit board inside a module designed for the environment, may strictly rely on a high-volume plastic package.

In contrast, a sensor that must contact a media such as water has different design considerations. For example, when a pressure sensors must interface to substances beyond dry air, one common recommendation is measuring the pressure from the back side. The top side of the pressure sensor die has the sensing elements and potentially other circuitry that cannot survive exposure to water. As shown in the figure, the sensor can survive in the application as long as the media providing the backside pressure does not have a detrimental impact to the silicon, plastic and other materials in the sensing element stack.

Materials impacted by applying back-side pressure. Source: Understanding Smart Sensors, 3rd Edition.

 

One of the common solutions for isolating the top surface of a pressure sensor is a protective coating such as parylene that is applied by a vapor deposition polymerization process. The parylene allows pressure to be transmitted to the top side of pressure sensor.

At the module or end-packaging level, epoxy encapsulation and O-rings for sealing are among the packaging techniques used to provide increased protection to a sensor.

To address the harshest applications where an IP69K rating is required, the materials get rather specific. The packaging housing is frequently a hermetically-sealed stainless steel such as 316, or an FDA-grade with a molded connector to attach to an external cordset/cable.

Polybutylene terephthalate (PBT) thermoplastic housing or cast aluminum housing can also be found as packaging materials for IP69K rated sensors.

These are just a few of the examples of matching the sensor’s packaging capabilities to its application requirements. In many cases, a sensor supplier may have extensive knowledge of its sensors’ capabilities to survive specific applications.


Filed Under: Sensor Tips, Design World articles, Sensors (position + other), Sensors (pressure)

 

Tell Us What You Think!

Related Articles Read More >

Human-like skin sensor detects objects for robotics apps
How are sensors involved in the Clean Air in Buildings Challenge?
How can a machine recognize hand gestures?
Want to feel better?

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings