Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

What are photoelectric proximity sensors?

By Miles Budimir | March 12, 2019

Share

Proximity sensors are used to sense the presence of objects or materials across a broad range of industrial and manufacturing applications. Key to their operation is that they don’t require physical contact with the target or object being sensed. This is why they’re often called non-contact sensors.

One of the most common types of proximity sensor is the photoelectric sensor. These sensors detect objects directly in front of them by the detecting the sensor’s own transmitted light reflected back from an object’s surface. A common arrangement is that both the emitter and receiver are housed in the same unit, but not all photoelectric sensors are constructed this way.

sensor

An example of a reflective sensor with both the emitter and receiver in a single housing. (Image via Pepperl+Fuchs)

There are three basic configurations for photoelectric proximity sensors; reflective, through-beam, and proximity.

Reflective sensors – In this type of sensor, a beam of light is sent out from an emitter and is bounced off of a reflector back to a detector. When the light beam is able to reflect back, this registers as no object being present. The beam failing to reflect back means there is an obstruction, which registers as the presence of an object. These sensors are less accurate than other types, but they’re also easier to install and wire and typically cost less than through-beam sensors.

The diagram shows a typical through-beam photoelectric sensor setup with separate emitter and receiver components. A break in the light beam indicates the presence of an object. (Image via Omron Industrial Automation)

Through-beam sensors – In this type of setup, an emitter sends out a beam of light usually directly in the line-of-sight of the emitter to a receiver. When an object breaks this beam of light, it’s detected as a presence. This type of setup requires two components; an emitter and a separate detector, which makes it a bit more complex to install and wire. However, the advantage is that it’s the most accurate of the sensing methods with the longest sensing range.

Proximity (diffuse) sensor – Diffuse photoelectric sensors are similar in some respects to reflective sensors. This is because like reflective sensors they emit a light beam in the direction of the object to be detected. However, instead of a reflector used to bounce the light back to a detector, the object to be sensed functions as the reflector, bouncing some of the light back to be detected and register an object’s presence.

 


Filed Under: Motion Control Tips
Tagged With: Sensors
 

Tell Us What You Think!

Related Articles Read More >

New gearboxes for electric motors in mobile machines
Leading motion-control and actuation options for robotics
Basics of wave and cycloidal gearing for robotics and servo designs
New micro servo-drive system for extra-low-voltage manufacturing applications

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings