Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

What limits linear bearing speed? (Part 1)

By Danielle Collins | May 28, 2017

Share

High-speed motion is a requirement for applications where throughput is a critical factor, such as packaging and electronic assembly. These systems typically use linear motors or steel reinforced belt drives in conjunction with recirculating linear bearing guides for good stiffness and high load capacity. But the speeds demanded by these applications can pose a challenge for recirculating linear bearings, which are typically rated for maximum speeds of 3 m/s (9.8 ft/s).


Depending on the type of linear guide and the manufacturer, a load factor of between 2 and 4 may be recommended when the maximum speed exceeds 2 m/s (6.6 ft/s). When calculating bearing life, the bearing’s dynamic load capacity is divided by the load factor. This is done to account for vibrations and shocks that occur at high speeds.


Recirculating linear ball bearings have very good running properties, with rolling contact between highly machined surfaces and minimum friction (when properly lubricated). So why is their maximum speed limited?

The answer has to do with acceleration and Newton’s second law of motion: F = ma (force = mass x acceleration).

Recall that the balls in recirculating linear bearings change direction as they move from the load-bearing zone to the recirculation zone. In order to do this, they must decelerate as they’re guided around the end cap by the recirculation mechanism. This deceleration produces a force on the recirculation elements—especially the bearing block end cap. The higher the velocity of the balls (based on the velocity of the bearing block), the greater the deceleration and the higher the forces on the end cap (back to F = ma).

linear bearing speed

In a recirculating linear bearing, the balls change direction as they travel through the bearing block. This results in high forces on the recirculation elements and end caps.
Image credit: Schaeffler Group Inc.

Understanding the principle of recirculation, you can see that there are two ways to achieve higher speeds with linear recirculating ball bearings: use an end cap capable of withstanding higher forces, or reduce the mass of the balls.

Most linear bearing manufacturers, indeed, offer recirculating ball bearings with reinforced recirculation mechanisms, including end caps. This is often the design for linear bearings labeled as “high speed,” with maximum speeds up to 5 m/s (16.4 ft/s).

Some manufacturers also offer high-speed linear recirculating bearings with ball chains (also referred to as ball separators, ball spacers, or caged balls) because they eliminate contact between balls—further reducing friction and heat—and ensure that each ball is supplied with constant and sufficient lubrication.

linear bearing speed

Ball chains ensure that each ball receives constant and sufficient lubrication.
Image credit: THK

The other alternative is to reduce the mass of the balls, thereby reducing the forces imparted on the end caps during recirculation. To achieve this, some manufacturers offer linear bearing blocks with ceramic balls. Ceramic is used because it has a low mass-to-strength ratio, and it has good rolling properties when used on a steel surface. Linear bearings with ceramic balls can achieve maximum speeds up to 10 m/s (32.8 ft/s), but their dynamic load capacities are reduced by up to 30 percent when compared to similar bearings with conventional steel balls.


Next, we’ll look at factors that limit the speed of linear plain bearings.

Feature image credit: Federal Highway Administration


Filed Under: Bearings, Motion control • motor controls

 

About The Author

Danielle Collins

Tell Us What You Think!

Related Articles Read More >

Automation 1 Family and iXC4e
Aerotech continues development of Automation1 motion control platform
Motion & Control Enterprises purchases RSA and Global Controls, fourth acquisition this year
49503-ACS Motion-CMxa
ACS Motion Control releases SPiiPlusCMxa EtherCAT motion controller
SDP-SI-040
SDP/SI launches brushless DC motors and motion control products series

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings