Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

COMSOL introduces the Plasma Module

By Larry Boulden | July 2, 2010

Share

Burlington, VT — COMSOL, Inc. announces the release of the Plasma Module. Based on COMSOL Multiphysics, the Plasma Module brings easy-to-use tools for the study of low temperature plasmas. The module is designed for researchers, engineers and experimentalists in the field of plasma science to model non-equilibrium discharges which occur in a wide range of engineering disciplines. Target application areas utilizing plasmas include light sources, semiconductor processes, surface coating, and medical sterilization. The module is accompanied by a suite of tutorial and industrially relevant models which serve as both instructional examples and a foundation for future work.

COMSOL-Multiphysics-Plasma-Module-1
This image, created using the COMSOL Multiphysics Plasma Module, shows the electron temperature inside an Argon ICP reactor used for the fabrication of semiconductor devices.

“Simulation of plasmas is a daunting task that is now being addressed for the first time ever using true multiphysics technology,” comments Dan Smith, Lead Developer of the Plasma Module with COMSOL, Inc. “We leverage this technology in the Plasma Module to solve the complex interaction between the electromagnetic fields and charged particles which collectively constitutes plasma. Users will be able to turn to simulation for a wide range of plasma applications that will reduce the need for costly experiments and increase productivity. ”

Specialized Plasma Modeling Interfaces
Low temperature plasmas represent the amalgamation of fluid mechanics, reaction engineering, physical kinetics, heat transfer, mass transfer and electromagnetics. The net result is a true multiphysics problem involving advanced couplings between the different physics. The Plasma Module features application-specific physics interfaces that automatically implements the complicated coupling between each of the components which make up plasma.

There are specialized modeling interfaces for the most common types of plasma reactors including inductively coupled plasmas (ICP), DC discharges, wave heated discharges (microwave plasmas) and capacitively coupled plasmas (CCP). In the spirit of existing COMSOL products, each of the interfaces can be customized, modified and extended in arbitrary ways by the user.

COMSOL-Model_Wizard_plasma
The Plasma Module Model Wizard let users choose the type of plasma to model. This image shows the Inductively Coupled Plasma physics interface selected.

Modeling the interaction between the plasma and an external electrical circuit is an important part of understanding the electrical characteristics of a discharge. The Plasma Module provides tools to add circuit elements directly to a 1D, 2D or 3D model. Alternatively you can import an existing SPICE netlist into the model. The plasma chemistry is specified either by loading in sets of collision cross sections from a file, or by adding reactions and species directly in the user interface.

The module includes a set of fully documented models of:

• Capacitively coupled plasma (CCP)
• Microwave plasma
• DC discharge
• Dielectric barrier discharges(DBD)
• Reactive gas generator
• Thermal plasma
• The Gaseous Electronics Conference (GEC) reference cell
• Boltzmann analysis of swarm data

“The Plasma Module is truly a revolutionary product because it combines the universally acclaimed COMSOL Multiphysics user interface with industrial strength algorithms and numerical methods. The net result is a product with unprecedented ease of use which can handle arbitrarily complicated industrial and academic problems.” concludes Dan Smith.

COMSOL-Argon_gec_reactor
Modeling an Inductively Coupled Plasma for the Gaseous Electronics Conference (GEC) reference cell using the COMSOL Multiphysics Plasma Module. The plot shows the electron density in the reactor for Argon plasma.

Plasma Module Highlights
• Application-specific interfaces for the most common types of plasmas.
• 2-term Boltzmann solver to compute source coefficients and transport properties from cross section data.
• Add and remove reactions, surface reactions and species to create arbitrarily complex plasma chemistries.
• Define reaction sources using cross section data, look-up tables, Arrhenius coefficients, rate constants or Townsend coefficients.
• Automatic computation of tensor transport properties for electrons and plasma conductivity when a static magnetic field is present.
• CHEMKIN file import for species thermodynamic and transport properties.

COMSOL
www.comsol.com

::Design World::


Filed Under: FEA software, Simulation, Software

 

Tell Us What You Think!

Related Articles Read More >

The top ten programming languages
PROSTEP expands cooperation with Siemens Digital Industries Software
Siemens’ NX delivers greater cross-discipline collaboration and knowledge capture
55417-edgeConnectoren_V3.0_05-2022_cmyk_300dpi
edgeConnector product family from Softing now include a REST API

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings