In the past 30 years, industrial robots have increased the productivity and quality in mass production enormously and simultaneously reduced the production costs. Since 2005, the number of industrial robots installed annually have more than doubled, to more than 250,000 in 2015.
However, the next evolution – or perhaps even revolution – in the field of robotics are the service robots that support us outside of the protected shop floors, for example at our workplace or at home. But service robots that work with us in our everyday environment need a lot more abilities. Contrary to industrial robots, the focus is not on absolute precision in the movements, but instead on understanding environments and situations, performing localization tasks within our very complex surroundings, as well as flexible interaction with objects and people. That means: Service robots have to be more “human” than industrial robots, but without necessarily looking like humans. Therefore it makes sense to take a look at nature and use the concepts present in humans and animals as source of inspiration.
Our motion apparatus consists of joints, muscles and tendons. Contrary to the joints customarily used in today’s robots, which are rigidly connected via a gearhead, us humans have an elastic coupling in the form of the tendons. It enables us to store energy and protects our skeleton against hard impacts.
Additionally it makes force-regulated interaction with the surroundings possible. Inspired by the natural motion apparatus, so-called “Serial Elastic Actuators (SEA)” can be created that have a spring element downstream of the motor and gearhead. The spring protects the gearhead against impacts, permits very accurate measurement of the forces involved in interactions and enables a highly efficient gait with up to 70 percent energy savings. Such SEA drives can, for example, be found in the ETH robot ANY-mal sold by ANYbotics.
Read more in the latest issue of „driven“.
Filed Under: maxon Driven
Tell Us What You Think!