Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19

Wiegand wire energy harvesting components

By Mike Santora | July 18, 2019

Share

POSITAL-Wiegand-Sensoren-590POSITAL’s Wiegand assemblies offer a compact and efficient way of harvesting power for electronic circuits in electromechanical devices, eliminating the need for backup batteries.

The operating principle of POSITAL’s Wiegand modules is simple. A “Wiegand wire” is a short length of specially prepared Vicalloy (vanadium-iron-cobalt) wire. When exposed to a changing external magnetic field (e.g. a nearby permanent magnet mounted on a rotating shaft) the Wiegand wire will initially retain its original magnetic polarity, and then abruptly ‘flip’ its polarity when the change to the external magnetic field reaches a certain threshold. This sudden change in the magnetic state of the core induces a current pulse in a copper coil wound around the Vicalloy core. This current pulse is very short-lived, but the energy harvested from the mechanical movement of the magnet can be captured and used to activate a low-power electronic circuit. An important feature of the Wiegand effect is that the amount of electric power generated with each reversal of the magnetic polarization is constant and completely independent of the rate of change of the external magnetic field, even if this happens very slowly. POSITAL Wiegand modules have been used to reliably power rotation counters in tens of millions of devices, including multi-turn rotary encoders, gas and water meters.

Production Since 1974 – Started by John R. Wiegand
Proven In Encoders & Water Meters Since > 10 Years
Used In Access Cards For > 30 Years
Power Supply For Future IoT Applications
High Energy Output of ~170 nJ

Wiegand assemblies are a core component in POSITAL’s IXARC multiturn absolute rotary encoders, providing a maintenance-free method for powering the counter that records the number of complete rotations that the device experiences. POSITAL also offers Wigand assemblies to other manufacturers. These consist of a 15mm length of Wiegand wire surrounded by a copper coil, all contained in an SMD-mountable plastic structure. Wiegand wire production is carried out at locations in the U.S. and Europe, ensuring a stable, reliable supply chain. These assemblies can be used wherever low-cost, zero-maintenance, battery-free energy harvesting systems are needed to energize electronic counters and other low-power electronic devices.

Posital
www.posital.com

Tell Us What You Think! Cancel reply

MOTION DESIGN GUIDES

“motion

“motion

“motion

“motion

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Drilling Rig OEM Benefits from a PLC with Edge Computing Technology: IIoT Case Study
  • #1 Reason for Retaining Ring Failure & How to Overcome It
  • Motion controllers: design from scratch or buy ready-made?
  • 4 Key Trends in Machine Engineering
  • Configuration Management: Configuration Integrity IS A Core Driver for Business Success
  • How to Choose a Linear Actuator
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Tweets by @DesignWorld
Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP Awards

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19