Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Amphibious Remote-Controlled Machines to Help Clean Up Nuclear Disaster Sites

By Lancaster University | January 15, 2016

Submersible remote-controlled machines are to be created that will accelerate the clean-up operation at nuclear sites such as disaster-stricken Fukushima Daiichi.

When built, the technology will, for the first time, be able to assess radiation – particularly neutron and gamma-ray fields – under water to check the safety and stability of material within submerged areas of nuclear sites.

The technology could also be used to speed up the removal of nuclear waste from decaying storage ponds at the Sellafield Reprocessing facility in Cumbria – shortening decommissioning programmes and potentially delivering significant savings for taxpayers.

Led by engineers at Lancaster University, and involving colleagues at the University of Manchester, Hybrid Instruments Ltd. as well as Japanese partners, the international research project, which is funded by the Engineering and Physical Sciences Research Council, will develop a remote-controlled vehicle that can go into these harsh submerged environments to assess radiation levels.

When Fukushima was hit by huge Tsunami waves in the wake of the most powerful earthquake ever to hit Japan, the cores of three of the six reactors were damaged and had to be flooded by sea water to keep them cool to prevent more extensive damage.

Nuclear fuel debris needs to be removed to enable safe decommissioning of the reactors, however it is not known how much there is, its condition and the likelihood of accidental reactions being triggered. New detection instruments developed through the project will help identify nuclear fuel and help operators to deal with it safely.

Malcolm Joyce, Professor of Nuclear Engineering at Lancaster University and lead author of the research, said: “A key task is the removal of the nuclear fuel from the reactors. Once this is removed and stored safely elsewhere, radiation levels fall significantly making the plant much more safer, and cheaper, to decommission.

“Our research will focus on developing a remote-operated submersible vehicle with detection instruments that will be able to identify the radioactive sources. This capability does not currently exist and it would enable clean-up of the stricken Fukushima reactors to continue.”

Engineers at Lancaster University have expertise in radiation detection technology and experts at the University of Manchester will concentrate of developing the remote-operated vehicle.

Barry Lennox, Professor of Applied Control at the University of Manchester said: “A key challenge with the remote-operated vehicle will be to design it so that it can fit through the small access ports typically available in nuclear facilities. These ports can be less than 100 mm in diameter, which will create significant challenges.”

This two and a half-year international research project also involves Japanese partners, including the Japan Atomic Energy Agency, the National Maritime Research Institute of Japan and the Nagaoka University of Technology.

There is potential for the resulting technology to also be used by the oil and gas sector for assessment of naturally-occurring radioactive material in offshore fields.

Professor Philip Nelson, Chief Executive of the Engineering and Physical Sciences Research Council, said: “The disaster at Fukushima has created massive challenges for Japan, the safe removal of the fuel rods from the site is just one, but it is a critical step in decommissioning the plant and its material. This EPSRC-funded research will provide the authorities with the tools to assess the site and prepare for removal. EPSRC is proud to be assisting this international project.”

You Might Also Like


Filed Under: M2M (machine to machine)

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more