Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Common challenges that wave springs address

By Lisa Eitel | August 13, 2018

Share

Springs are flexible mechanical components to store and release energy or apply and release forces on machine axes. Wave springs combine flat (non-coiled) bow springs (as their waves) with traditional compression-spring coil geometry. For the design’s compactness (as a high force-to-work height ratio) and other benefits, some motion systems have migrated from traditional helical or coil springs to flat-wire wave springs.

Design engineers typically work with manufacturers to customize wave springs to specific operating conditions by material, thickness, number of turns, and other geometric features. That helps address or avoid the following spring-installation challenges.

Wave springs outperform other springs under the application of normal (non-twisting) forces. Data courtesy P. Ravinder Reddy and V. Mukesh Reddy

Column buckling in springs occurs with long free lengths and spring ends that can’t evenly distribute load around the spring circumference. Buckling mainly depends on geometry and not spring material properties. Traditional springs tend to buckle when deflection (for a set free length) is excessive. Such buckling is preventable by keeping the design to below critical deflection and length values. The former is the ratio of deflection to spring free length; critical length is the ratio of that length to the spring diameter. One rule of thumb for avoiding buckling in traditional springs is to keep free length to less than quadruple the spring diameter — and load to less than the product of spring rate, length, and buckling factor.

Wave-spring buckling factors vary greatly, but the value is nearly always higher than those of other springs. That means they readily hold their centered cylindrical shape and often self-locate into assembly bores — even operating reliably in machined assembly features held to relatively loose tolerances.

Spring surge is a potential concern in assemblies with a compression spring having one free end. Depending on the motion input, such springs can exhibit resonance that’s large enough to cause temporary loss of contact with the assembly housing — and damage surrounding machine elements. That’s an issue of highest concern if the spring material provides little damping and the spring operates on an axis that must make fast reciprocating strokes. Well-chosen wave-spring geometry and material can help avoid issues of spring surge and resonance excitation.

Mean, cycling, and localized stresses on the spring each load cycle (and the load cycle itself) dictate when spring fatigue failure could occur. For any spring design, more turns make for a longer MTBF … while longer springs generally have shorter MTBF. But no matter the variation, wave springs fatigue more slowly and have longer MTBF than traditional springs.

Springs under normal operation exhibit no permanent spring-rate or dimensional changes — called relaxation or set. But deflection under full load with stresses exceeding the spring material’s yield strength will induce permanent deformation that compromises the spring ability to deliver full design force or energy. This is often a concern in designs that must operate in extremely hot ambient conditions. Wave-spring deflection is about 25% lower than that exhibited by traditional springs. Wave springs are also more resistant to relaxation for comparable diameters, free lengths, and turns. One caveat: In designs necessitating fewer turns and shorter free lengths, sometimes traditional compression springs outperform wave springs by exhibiting less deformation.

Any spring under a twisting moment load exhibits shear stress and stores strain energy. Wave springs exhibit less strain energy than traditional spring variations (and lower equivalent stress values) so better withstand such loading.


Filed Under: Motion Control Tips
Tagged With: smalley
 

About The Author

Lisa Eitel

Lisa Eitel has worked in the motion industry since 2001. Her areas of focus include motors, drives, motion control, power transmission, linear motion, and sensing and feedback technologies. She has a B.S. in Mechanical Engineering and is an inductee of Tau Beta Pi engineering honor society; a member of the Society of Women Engineers; and a judge for the FIRST Robotics Buckeye Regionals. Besides her motioncontroltips.com contributions, she also leads the production of the quarterly motion issues of Design World.

Tell Us What You Think!

Related Articles Read More >

Encoders from SIKO support Industrial Ethernet
Draw-wire encoders from SIKO measure position, speed and inclination
Incremental encoders configurable via NFC (near-field communication)
Low-cost motion control offered with CLICK PLUS PLCs from AutomationDirect

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings