Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

High Power, High Safety Oxide-Based Negative Electrode Materials for Li-Ion Battery

By Toyohashi University of Technology | March 13, 2015

Share

Charge (solid lines) and discharge (dashed lines) curves at different fixed current densities of 0.5, 2, 4 and 7 mA cm-2 for (a) A-TNO and (b) V-TNO electrodes are shown.Mixed Ti-Nb oxide Ti2Nb10O29 (TNO) is one of the negative electrode materials for large scale Li-ion battery with high safety because the potential (= 1.6 V vs. Li/Li+) for Li storage of TNO should avoid possible Li plating or formation of Li dendrites and the short circuit of the battery to fire the flammable organic liquid electrolyte.

TNO shows the reversible capacity of 250 mAh g-1 at low current rate and good cycle stability. However, TNO is insulating materials and its electronic conductivity is quite low, which leads to the poor electrochemical performance at high current rate.

Here, Toshiki Takashima, Ryoji Inada, Yoji Sakurai and colleagues at Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology show the improvement of electrochemical performance of TNO at high current rate by vacuum annealing.

The photos and X-ray diffraction patterns of TNO annealed in air and vacuum are compared in Fig. 1. Although the crystal structure is not changed by the difference annealing atmosphere, the color of TNO is changed from white to dark blue by vacuum annealing, indicating that the presence of the mixed Ti4+/Ti3+ ions.

Thermogravimetric analysis clearly shows small amount of oxygen vacancy is introduced by vacuum annealing, which causes partial reduction from Ti4+ to Ti3+ in TNO. By addressing this fact, vacuum-annealed TNO (V-TNO) shows much higher electronic conductivity (10-6?10-5 S cm-1) than air-annealed one (A-TNO) at room temperature.

Fig. 2 shows the comparison of charge and discharge curves of both A-TNO and V-TNO electrodes at various fixed current densities per unit electrode area of 0.5, 2, 4 and 7 mA cm-2. The charge and discharge capacities for both electrodes are decreased monotonically with increasing current densities, but V-TNO shows larger capacity than A-TNO under the current density above 2 mA cm-2. This tendency becomes more remarkable as the current density is increased.

The improved electrochemical performance of V-TNO electrode at high current rate is mainly attributed to enhancement of intrinsic electronic conductivity. V-TNO can potentially be used as novel negative electrode material of Li-ion battery with high power and high safety for large scale applications such as hybrid electric vehicles and energy storage system.


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings