Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER

Injection-Molding Wood Powder for Sustainable Fabrication

By University of Electro Communications | June 12, 2019

Biomass materials such as wood are environmentally-friendly alternatives to fossil resources. As an example, wood is typically non-toxic and carbon neutral. Furthermore, wood can be produced in a sustainable manner by appropriate planting and trimming of trees. Therefore, the use of wood resources as industrial materials is an important aspect for realizing a sustainable society.

Incorporating wood into industrial applications requires effective processing methods. Wood products are generally shaped by cutting processes because the deformability of wood is inferior to that of metals and plastics. Therefore, much of the original material is turned into waste chips or powder during the cutting process.

Shohei Kajikawa and colleagues at The University of Electro-Communications and Kyoto University developed injection molding of wood powder with sucrose, which is a natural binder, for fabricating products based on natural resources effectively.

In the molding process, the binder plasticizes upon heating and the material, which is composed of the wood particles and the binder, flows due to the deformation of the binder and the slip of the particles. The binder solidifies between the particles upon cooling, and then the material is self-bonded. Fluidity of the material is important for improving moldability, and changes drastically with molding conditions, such as temperature and binder content. Therefore, effects of added sucrose on the moldability of the wood powder were investigated, the molding conditions were optimized by thermal analysis, capillary flow test and injection molding.

As a result, the wood powder with the sucrose flowed at temperatures above 180 ºC, although flow was restricted above 220 ºC due to the effect of gases evolved from the sucrose. The minimum sucrose content required for flow was 30 wt% within the temperature range of 180 to 200 ºC. The material was filled in the mold under optimized conditions, and the product with good surface texture was molded at a sucrose content of 30 wt% and 200 ºC.

This proposed method allows the fabrication of products from naturally occurring materials with minimal environmental impact.

You might also like


Filed Under: Materials • advanced, MOTION CONTROL

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Digitalization made easy: Bridging IT/OT with scalable network infrastructure
  • Apple Rubber custom o-rings for harsh underwater conditions
  • ASMPT chooses Renishaw for high-quality motion control
  • Innovating Together: How Italian Machine Builders Drive Industry Forward Through Collaboration
  • Efficiency Is the New Luxury — and Italy Is Delivering
  • Beyond the Build: How Italy’s Machine Makers Are Powering Smart Manufacturing
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.