Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Metamaterial Device Allows Better Water-to-Air Sound Transmission

By Bob Yirka , Phys.org | January 29, 2018

Share

A team of researchers from Yonsei University in Korea and Hokkaido University in Japan, has developed a metamaterial device that allows for much better than normal sound transfer between water and air. In their paper published in Physical Review Letters, the researchers describe their device, how it works and the ways it needs to be improved.

Normally, it is nearly impossible to hear underwater sound from the air above—the same is true in reverse. This is because of acoustic impedance forming a sound barrier. Sound waves bounce off the barrier, preventing them from escaping. In this new effort, the researchers applied a metamaterial device (a metasurface) to the barrier that essentially serves as a tunnel between the water and the air, allowing more sound waves to pass through.

The metamaterial device the team built consists of a cylindrical metal outer shell that looks a lot like a car tire rim. It has a rubber segmented membrane at its center with a weight to keep it taut. The device floats on the water. A person hovering over it in the air can hear sounds from below the surface that are not normally audible.

Normally, just 0.1 or 0.2 percent of sound waves can penetrate the water/air barrier, but in testing their new device, the researchers found that it increased sound transmission to the extent that up to 30 percent of waves got through.

The device could theoretically be used to help with human communications between people in the water and those above the surface, or to listen to sea creatures stirring below—but it has two major drawbacks that will likely limit its use. The first is that it is only able to pass through sounds waves that come from directly below it—diagonal waves are still bounced away. The second problem is that it only works for a certain limited range of frequencies—from approximately 600 to 800 Hz. Potentially, both problems could be solved by building arrays of individual devices that could pass different frequencies and enough of them to cover a large area.

Eun Bok et al. Metasurface for Water-to-Air Sound Transmission, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.044302


Filed Under: Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings