Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Research Holds Great Promise for Advancing Sustainable Energy

By atesmeh | March 25, 2015

Share

New research published by Rutgers University chemists has documented significant progress confronting one of the main challenges inhibiting widespread utilization of sustainable power: Creating a cost-effective process to store energy so it can be used later.

“We have developed a compound, Ni5P4 (nickel-5 phosphide-4), that has the potential to replace platinum in two types of electrochemical cells: electrolyzers that make hydrogen by splitting water through hydrogen evolution reaction (HER) powered by electrical energy, and fuel cells that make electricity from combining hydrogen and oxygen,” said Rutgers Chemistry Professor Charles Dismukes. “Platinum is the benchmark material for both devices as it has the best conversion efficiency. However, while platinum may be acceptable for making jewelry and low volume specialty applications, it is too expensive for large-scale applications such as energy storage and conversion. Our new HER catalyst, Ni5P4, has the strong potential to overcome this challenge.”

Shown are Rutgers University chemistry professors Martha Greenblatt and Charles Dismukes in a laboratory on the Busch Campus in Piscataway. (Credit: Photo by Nick Romanenko/Rutgers University)

Rutgers Chemistry Professor Martha Greenblatt, Dismukes and colleagues published their findings on the patent-pending technology in March edition of the Royal Society of Chemistry journal, Energy & Environmental Science.

“Scientists have been working for years to develop low-cost replacements for platinum and other noble metals used in these devices,” Greenblatt said. “Ni5P4 is the most promising new material presently available that combines both the energy conversion efficiency of noble metals, yet is much more affordable based on the high natural abundance of its elements – over a million times greater than platinum.”

The researchers believe that Ni5P4 should lower the material costs of both electrolyzers and fuel cells, while maintaining the efficiencies of these technologies for electrical conversion. “These devices are two key technological advances that could open the door to renewable fuels produced from sustainable feedstocks – water and sunlight,” Dismukes said.

The next step for the research is to test the operating stability and efficiency of the compound over extended time periods in commercial electrolyzers and fuel cells. As these devices have different requirements for operation, independent tests for both will be needed. Rutgers has partnered with Proton OnSite of Wallingford, Conn., a commercial manufacturer of electrolyzers, to test Ni5P4 as an appropriate HER catalyst.

To achieve the overall water splitting process, the HER catalyst cathode will be combined with an oxygen-evolving (OER) catalyst anode. The Rutgers team has previously developed a noble-metal-free OER catalyst – LiCoO2 (lithium cobalt oxide) – that has shown promising performance in preliminary tests at Proton OnSite.

“If used together, these catalysts could eliminate the need for expensive noble metal based electrode materials,” Greenblatt said.

Funding for the Ni5P4 research was provided by the Air Force Office of Scientific Research, NATCO Pharma Ltd. and Rutgers, while the OER research is now being funding by the Department of Energy Office of Energy Efficiency and Renewable Energy.

In related work, scientists from Rutgers and Proton OnSite are partnering with members of the Solar Fuels Institute (SOFI) of Telluride, Colo. on a demonstration project that seeks to build a solar-powered mobile electrolyzer for making public demonstrations showing the production of a renewable liquid fuel using only sunlight, water and carbon dioxide as inputs.

Joining Professors Dismukes and Greenblatt as co-authors of the Energy & Environmental Science article were Postdoctoral researchers Drs. Anders Laursen, Mariana Whitaker, Maria Retuerto, and Tapati Sarkar, and undergraduate Kelly Patraju, all of Rutgers; Dr. Nan Yao of Princeton University; and Professor Kandalam Ramanujachary of Rowan University.


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings