Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Wearable Device Helps Vision-Impaired Avoid Collision

By atesmeh | March 27, 2015

Share

Gang Luo, Ph.D., Associate Scientist at Mass. Eye and Ear/Schepens, and Assistant Professor of Ophthalmology at Harvard Medical School, adjusts the wearable device that his team created to help those who are visually impaired avoid collision while walking. Credit: Photo by Peter Mallen, Mass. Eye and EarPeople who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood of falls and collisions. As therapeutic vision restoration treatments are still in their infancy, rehabilitation approaches using assistive technologies are often times viable alternatives for addressing mobility challenges related to vision loss.

Researchers from Massachusetts Eye and Ear, Schepens Eye Research Institute used an obstacle course to evaluate a wearable collision warning device they developed for patients with peripheral vision loss. They found the device may help patients with a wide range of vision loss avoid collisions with high-level obstacles. Their findings are featured on Investigative Ophthalmology and Visual Science (IOVS).

“We developed this pocket-sized collision warning device, which can predict impending collisions based on time to collision rather than proximity. It gives warnings only when the users approach to obstacles, not when users stand close to objects and not when moving objects just pass by. So, the auditory collision warnings given by the device are simple and intuitively understandable. We tested the device in a density obstacle course to evaluate its effect on collision avoidance in people with peripheral vision loss. To show its beneficial effect, we compared the patients’ mobility performance with the device and without it. Just demonstrating the device can give warning for obstacles in walking would not prove the device is useful. We have to compare with a baseline, which is walking without the device in this case.” said the senior author Gang Luo, Ph.D., Associate Scientist at Mass. Eye and Ear/Schepens, and Assistant Professor of Ophthalmology at Harvard Medical School.

Twenty five patients with tunnel vision or hemianopia completed the obstacle course study and the number of collisions and walking speed were measured.

Compared to walking without the device, collisions were reduced significantly by about 37% with the device and walking speed barely changed. No patient had more collisions when using the device than when not using it.

“We are excited about the device’s potential value for helping visually impaired and completely blind people walk around safely. Our next job is to test its usefulness in patients’ daily lives in a clinical trial study.” Dr. Luo said.

This study is entitled Evaluation of a portable collision warning device for patients with peripheral vision loss in an obstacle course. Other authors are Shrinivas Pundlik and Matteo Tomasi.

Note: These two videos demonstrate the device and help illustrate the study:

https://www.youtube.com/watch?v=lrv_OlA5Tvc

https://www.youtube.com/watch?v=2fiCDh-UxbQ

For more information visit http://www.meei.harvard.edu.

 


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings