Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

What is V/Hz control mode for AC drives?

By Danielle Collins | June 15, 2023

AC motors are commonly paired with variable frequency drives (VFDs) which control motor speed by regulating the frequency of the supplied voltage. Depending on the application and level of speed regulation required, VFDs can be controlled by either scalar or vector methods. The most common type of VFD control is a scalar method referred to as volts per hertz (V/Hz) or volts per frequency (V/f).


The terms variable frequency drive (VFD) and variable speed drive (VSD) are often used interchangeably, but there is a distinction between the two.

A variable speed drive (VSD) is any drive that can control the speed of a piece of equipment, including both AC and DC motors. VSDs can operate via mechanical, hydraulic, or electrical means.

 A variable frequency drive (VFD) is used to control the speed of AC motors, and does so by varying the frequency of the supply voltage to the motor.


How V/Hz control works

AC motors are designed for a magnetic field (flux) of constant strength. The magnetic field strength is proportional to the ratio of voltage (V) to frequency (Hz), or V/Hz. But a VFD controls the motor speed by varying the frequency of the applied voltage, according to the synchronous speed equation:

N = 120⋅f / P

Where N = motor speed (RPM)
f = input voltage frequency
P = number of motor poles

Varying the voltage frequency affects both the motor speed and the strength of the magnetic field. When the frequency is lowered (for slower motor speed), the magnetic field increases, and excessive heat is generated. When the frequency is increased (for higher motor speed), the magnetic field decreases, and lower torque is produced. In order to keep the magnetic flux constant, the V/Hz ratio must remain constant. This keeps torque production stable, regardless of frequency.

V/Hz Control

V/Hz control maintains a constant ratio between voltage (V) and frequency (Hz).
Image credit: Square D

V/Hz control of a VFD drive avoids this variation in the magnetic field strength by varying the voltage along with the frequency, in order to maintain a constant V/Hz ratio. The appropriate V/Hz ratio is given by the motor’s rated voltage and frequency. For example, a motor rated for 230 V and 60 Hz will operate best at a V/Hz ratio of 3.83 at all times (230/60 = 3.83).

Traditional V/Hz control does not use feedback, and only changes the voltage and frequency to the motor based on an external speed command. For closed-loop V/Hz control, encoder feedback can be added to measure the motor’s actual speed. An error signal is generated based on the difference between actual speed and commanded speed, and the controller generates a new frequency command to compensate for the error. While it improves speed regulation, closed-loop V/Hz control isn’t common due to the added cost and complexity of the encoder and feedback hardware.

V/hz control mode ac drive

AC drives are essential to the efficient control of conveyors. Image: Oleksandr Hrishchenko

Performance and benefits of V/Hz control

V/Hz control is a simple, low-cost method for controlling variable frequency drives, and is generally regarded as the most common VFD control scheme. It is suitable for both constant torque and variable torque applications and can provide up to 150% of the rated torque at zero speed for startup and peak loads. Speed regulation is in the range of 2 to 3% of the maximum rated frequency, so this method isn’t suitable for applications where precise speed control is critical. The most common use for V/Hz control is to drive industrial equipment such as fans and blowers.

One unique benefit of V/Hz control over other methods is that it allows more than one motor to be operated by a single VFD. All the motors will start and stop at the same time, and they will all run at the same speed, which is beneficial in some processing applications, such as heating and cooling.

V/Hz control mode diagram

The V/Hz control method allows one VFD to control four motors in a cooling tower.
Image credit: variablefrequencydrive.org

Scalar methods for VFD control in context

As we just detailed, V/Hz or V/f control scalar methods vary both the voltage (V) and frequency (f) of power to the motor in order to maintain a fixed, constant ratio between the two, so the strength of the magnetic field is constant, regardless of motor speed. The appropriate V/Hz ratio is equal to the motor’s rated voltage divided by its rated frequency. V/Hz control is typically implemented without feedback (i.e. open-loop), although closed-loop V/Hz control — incorporating motor feedback — is possible. Speed regulation with scalar control is only in the range of 2 to 3% of rated motor frequency, so these methods aren’t suitable for applications where precise speed control is required. Open-loop V/Hz control is unique in its ability to allow one VFD to control multiple motors and is arguably the most-commonly implemented VFD control method.

In contrast, vector control — also called field-oriented control (FOC) — controls the speed or torque of an AC motor by controlling the stator current space vectors, in manner similar to (but more complicated than) DC control methods. Field oriented control uses complex mathematics to transform a three-phase system that depends on time and speed to a two-coordinate (d and q) time-invariant system. Read more about how scalar and vector VFD control methods compare at the Motion Control Tips article: What are leading methods for VFD control of AC motors?

VFD sensorless v/hz control mode for AC drives

VFD for sensorless vector control image: Ekahardiwito Subagio Purwito

You Might Also Like


Filed Under: Blowers, Motion control • motor controls, Motion Control Tips
Tagged With: V/Hz control method, AC Drives
 

About The Author

Danielle Collins

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more