Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Macro Sensors Considers Temperature When Specifying LVDT Linear Position Sensors

By atesmeh | May 2, 2014

Share

vdtsMacro. Photo Credit: Macro SensorsMt. Olive, NJ – Macrosensors has announced that the LVDT linear position sensor remains a reliable tool for linear position feedback for various laboratory, industrial, military, and aerospace applications. LVDT position sensors are capable of providing linear displacement measurements from micro inches to 2 feet with high accuracy while operating over a wide range of temperatures. While the output stability of LVDT linear position sensors is suitable for many applications, it is not immune to variation with temperature. Temperature effects can be significant in certain specific applications such as aircraft, subsea, and turbo machinery.

Temperature Variations on Output Signal

Temperature variations can affect the output signal from an LVDT in two different ways: mechanical expansion and changes in LVDT electrical properties. Mechanical expansion causes relative motion between the LVDT core and the LVDT windings. The net effect is a false core motion signal that produces a zero-shift error. Temperature can also affect the electric properties of the LVDT by changing its primary input current or the magnetic properties of the core materials. This produces a scale-factor change or span-shift error.

AC vs. DC-Operated LVDTs

The maximum operating temperature of an AC-operated LVDT Position Sensors are 300°F as electronics can be located remotely from the sensor. A DC-operated LVDT, on the other hand, that contains electronics within the body of the sensor, is limited by the properties of the materials in the electronic signal-conditioning module. DC-LVDTs can operate at temperatures as low as –40° F, if the temperature remains nearly constant.  Read more at: http://macrosensors.com/blog/view-entry/Why-Use-an-AC-LVDT-versus-a-DC-LVDT-Linear-Positio/31/.

Ambient Temperature

Ambient temperature variations have a predictable effect on the operation of an AC- and DC-operated LVDT. While signal conditioning can help compensate for the primary current changes for the AC-LVDT, the DC-LVDT cannot use this tactic due to space limitation.

Temperature Effects on LVDT Materials

The effect of temperature variation on the magnetic properties of the LVDT core material is small and has negligible influence on transformer operation over the ordinary operating temperature range. To offset the effects of the thermal coefficient of the expansion of the LVDT materials, LVDTs are constructed to expand symmetrically from the center toward either end. New construction techniques and materials also enable LVDT operation in hostile environments including those with high and low temperature extremes. Custom LVDT Linear position sensors can be designed for operation at continuous temperatures as high as 400° F. The high temperature ratings are achieved by using special construction materials for the linear position sensors that include special high melting point soldering.

Temperature-Induced Resistance Variation

A rise in transformer temperature produces an increase in the resistance of the copper wire ordinarily used to wind the primary and second coils. The most direct consequence of this resistance increase is an increase in primary impedance.

Primary Current Stabilization

A constant-current excitation source is an obvious, but not always practical solution to temperature effects. If a constant-current power source is not available, primary current may be stabilized somewhat by connecting large external resistance in series with the primary.

For more information, visit www.macrosensors.com.


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings