Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Predictive Maintenance to Improve Asset Efficiency

By Dr. Sean Otto | November 21, 2018

Equipment manufacturers, engineering, procurement and construction (EPC) companies, and power and process plant owners and operators commonly face the challenge of keeping their fleet, machinery, and other assets working efficiently, while also reducing the cost of maintenance and time-sensitive repairs.

Considering the aggressive time-to-market required for industrial products and services, it is crucial to identify the cause of potential faults or failures before they have an opportunity to occur. Emerging technologies like the Internet of Things, big data analytics, and cloud data storage are enabling more vehicles, industrial equipment, and assembly robots to send condition-based data to a centralized server, making fault detection easier, more practical, and more direct.

By proactively identifying potential issues, companies can deploy their maintenance services more effectively and improve equipment up-time. The critical features that help to predict faults or failures are often buried in structured data, such as year of production, make, model, warranty details, as well as unstructured data such as maintenance history and repair logs.

By leveraging artificial intelligence models to identify anomalous behavior, the information derived from the equipment sensors can be turned into meaningful and actionable insights for proactive maintenance of assets, thereby preventing incidents that result in asset downtime or accidents.  Commonly known as predictive maintenance, this added intelligence enables organizations to forecast when or if functional equipment will fail so that its maintenance and repair can be scheduled before the failure occurs.

The Market: North America Tops Market Share

Due to higher spending by companies looking to optimize operating costs and increase profitability, North America will continue to be the biggest market for predictive maintenance solutions. With an estimated market share of 31.67 percent, North America is expected to grow its predictive maintenance solutions at a CAGR of 24.5 percent, maintaining its lead from 2017 through 2022. Key players include Bosch, GE, Hitachi, Honeywell and Rockwell Automation, just to name a few. 

Predictive Maintenance Approach: Increasing Product Availability 

The underlying architecture of a preventive maintenance model is fairly uniform irrespective of its end applications. The analytics usually reside on a host of IT platforms, but these layers are systematically described as:

  • Data acquisition and storage (either on the cloud or at the edge)
  • Data transformation—conversion of raw data for machine learning models
  • Condition monitoring—alerts based on asset operating limits
  • Asset health evaluation—generating diagnostic records based on trend analysis if asset health has already started declining
  • Prognostics—generating predictions of failure through machine learning models, and estimating remaining life
  • Decision support system—recommendations of best actions
  • Human interface layer—making all information accessible in an easy-to-understand format

Failure prediction, fault diagnosis, failure-type classification, and recommendation of relevant maintenance actions are all a part of predictive maintenance methodology.

As industrial customers become increasingly aware of the growing maintenance costs and downtime caused by the unexpected machinery failures, predictive maintenance solutions are gaining even more traction. With the manufacturing, energy and utilities verticals among the biggest demand drivers for predictive maintenance, it is even more critical for equipment manufacturers, EPCs and owners/operators to adopt a predictive maintenance solution to maintain a competitive advantage.

The bigger players have already been using this methodology for more than a decade. Small- and medium-sized companies in the manufacturing sector also can reap its advantages by keeping repair costs low and meeting initial operational costs for new operations.

While it evidently offers more business benefits than corrective and preventative maintenance programs, predictive maintenance is also a step ahead of preventive maintenance. As maintenance work is scheduled at preset intervals, maintenance technicians are informed of the likelihood of parts and components failing during the next work cycle and can take action to minimize downtime. 

Gain the Benefits of Predictive Maintenance

In addition to the advantages of controlling repair costs, avoiding warranty costs for failure recovery, reducing unplanned downtime and eliminating the causes of failure, predictive maintenance employs non-intrusive testing techniques to evaluate and compute asset performance trends. Additional methods used can include thermodynamics, acoustics, vibration analysis, and infrared analysis, among others.

The continuous developments in big data, machine-to-machine communication, and cloud technology have created new possibilities for the investigation of information derived from industrial assets. Condition monitoring in real-time is viable thanks to inputs from sensors, actuators, and other control parameters. What stakeholders need is a bankable analytics and engineering service partner who can help them leverage data science not only to predict embryonic asset failures, but also to eliminate them and take action in a timely manner.

 

Dr. Sean Otto currently leads business development for Cyient’s Advanced Analytics team, focused on designing AI and Machine Learning models to improve the functionality and reliability of equipment and systems in healthcare.  Leveraging the expertise of Cyient, a global equipment engineering and manufacturing service provider, and the growing advantages of “internet of things” and “connected devices”, Dr. Otto and his analytic teams bridge the needed gap between technology, operations and business.  

You Might Also Like


Filed Under: AI • machine learning, Industrial automation

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more