Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Revolutionary Robotic Hand of the Future

By Laura Carrabine | June 14, 2010

Share

The human hand is one of the body’s most complex structures. Researchers have made progress in the design of delicate grippers with fingers and thumbs. However, they are not yet available. Currently, only simple two or three-fingered grippers are used, and they accomplish only a limited range of tasks. Work is underway to develop more robust, five-fingered versions to take on more intricate work.

robotic-hands
Researchers are working on robotic hands that will replicate human hands. Each will have five fingers, each with four joints and three degrees of freedom. Every finger joint will be fitted with a self-developed, non-contacting  angle sensor and a torque sensor.


Progress in microelectronics and micromechanics has paved the way for producing a multi-fingered hand with separately controllable fingers and joints that replicate the human hand. In fact, the German Aerospace Centre (DRL) has developed a robotic hand with the Harbin Institute of Technology (HIT).

Thanks to micro and precise drive technology and high-performance bus technology, this development sets new standards for sensitive gripper hands that replicate human hands. The new DLR-HIT Hand II has five fingers, each with four joints and three degrees of freedom. The hand is also smaller and lighter than former versions. Four fingers are required for clasping conical parts and a thumb is used as an outer support. The mechanical range of movement must be properly controlled and monitored to enable full use of the hand.

The motors in the DRL-HIT Hand II fit directly into the fingers. Particular attention was paid to the control processor’s information with respect to positioning and operating data. This configuration facilitates the discrete drive to operate effectively. Every finger joint is fitted with a self-developed, non-contacting angle sensor and a torque sensor.

A high-speed bus transmits the data flow. Rapid feedback that compares target and actual value is crucial for the function of the controller, particularly in precise and delicate applications. Besides data volume, transfer speed is also vital, which is why an internal real-time 25 Mbps high-speed bus, based on field programmable gate arrays (FGPA)s, was developed for the application. Three leads are required for the external serial connection of hand and control processor. The actual controls consisting of a signal processor on a PCI insert card is integrated into a standard PC. The interface provides a way for the hand to be controlled at the PC with all sensor data displayed on the screen.

Maxon motor’s EC 20 flat drives were included because they are inexpensive, commercially available, and offer high power in a compact space.

Maxon-motor-EC-20-flat-drive-2

Each finger needs several drives which are controlled separately. In this instance, 15 brushless dc motors with Hall sensors are used for each hand. Maxon motor’s EC 20 flat drives were included because they are inexpensive, commercially available, and offer high power in a compact space. The motors and Hall sensors create a unit that is 10.4-mm long with an outer diameter of 21.2-mm. Each motor weighs 15 g. They are mounted with harmonic drive gears from the HDUC 05 range, which have the same diameter as the motor. The 3 W motors are available in a 12 or 24 V version and provide maximum torque of 8.04 mNm. Good dynamic behavior and preloaded ball bearings ensure precise response behaviour of control commands including changing the direction of rotation. The digital Hall sensors report the actual position to the controller accurately. The motors idle at 9,300 rpm. Thanks to compact drive technology with feedback and rapid data transfer per bus technology, the new DLR-HIT Hand II can be controlled very sensitively and precisely.

Maxon Motor
www.maxonmotorusa.com

::Design World::


Filed Under: Factory automation, Mechanical, Motion control • motor controls, Mechatronics

 

Tell Us What You Think!

Related Articles Read More >

Motion & Control Enterprises purchases RSA and Global Controls, fourth acquisition this year
49503-ACS Motion-CMxa
ACS Motion Control releases SPiiPlusCMxa EtherCAT motion controller
SDP-SI-040
SDP/SI launches brushless DC motors and motion control products series
PACMotion-servos
High-performance integrated motion control line from Emerson

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings