Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

XYZ Piezo Flexure Stage from PI

By Miles Budimir | April 22, 2010

PI’s P-563.3CD PIMars stage is a piezo flexure-guided scanning / nanomanipulation system. The unit enables precision motion control with resolution in the sub-nanometer realm and 340x340x340 µm travel in XYZ, significantly more than other capacitive-feedback equipped systems currently provide. Integrated, direct-measuring capacitance sensors and digital closed-loop control boost linearity by up to three orders of magnitude over conventional piezo stages.

PiMars_Piezo_Stage_Digital-Controller

PIMars stages incorporate high-force solid state piezo actuator drives, frictionless flexure guiding systems and absolute measuring capacitive position sensors. The high force of the solid state piezo actuators allows for fast response in the millisec range and high scanning frequencies.

PIMars™ stages are based on a different design principle than conventional scanning stages. The XYZ system consists of only one moving part, a single module rather than three individual stacked modules, as common in other XYZ systems. This “parallel-kinematics” mechanical design is complemented by a parallel direct- motion metrology feedback system.

With parallel direct-metrology, all non-contact sensors monitor the moving platform in reference it to ground “from the outside”. They can “see” off-axis and runout errors. The controller then eliminates unwanted motion in real-time. Conventional serial-metrology sensors (integrated in each axis) cannot detect off-axis errors.

Parallel motion metrology allows for significantly higher overall XYZ precision.

PI(Physik Instrumente)L.P.
www.pi-usa.us

::Design World::

You Might Also Like


Filed Under: Stages • gantries, LINEAR MOTION, MECHANICAL POWER TRANSMISSION, Motion control • motor controls

 

About The Author

Miles Budimir

Miles has been with Design World since 2009 covering motion control, automation, and test and measurement. He holds a BSEE degree and an MA in Philosophy from Cleveland State University and has experience working in the controls industry as a project engineer. Miles has taught engineering technology courses as well as engineering ethics continuing education courses for professional engineers in the state of Ohio. He is also a drummer, and enjoys travel and photography.

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more