Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER

3D Printers Have ‘Fingerprints,’ A Discovery That Could Help Trace 3D-Printed Guns, Counterfeit Goods

By Cory Nealon, University at Buffalo | October 17, 2018

That’s the takeaway from a new University at Buffalo-led study that describes what’s believed to be the first accurate method for tracing a 3D-printed object to the machine it came from.

The advancement, which the research team calls “PrinTracker,” could ultimately help law enforcement and intelligence agencies track the origin of 3D-printed guns, counterfeit products and other goods.

“3D printing has many wonderful uses, but it’s also a counterfeiter’s dream. Even more concerning, it has the potential to make firearms more readily available to people who are not allowed to possess them,” says the study’s lead author Wenyao Xu, Ph.D., associate professor of computer science and engineering in UB’s School of Engineering and Applied Sciences.

The study will be presented in Toronto at the Association for Computing Machinery’s Conference on Computer and Communications Security, which runs from Oct. 15-19. It includes coauthors from Rutgers University and Northeastern University.

To understand the method, it’s helpful to know how 3D printers work. Like a common inkjet printer, 3D printers move back-and-forth while “printing” an object. Instead of ink, a nozzle discharges a filament, such as plastic, in layers until a three-dimensional object forms.

Each layer of a 3D-printed object contains tiny wrinkles—usually measured in submillimeters—called in-fill patterns. These patterns are supposed to be uniform. However, the printer’s model type, filament, nozzle size and other factors cause slight imperfections in the patterns. The result is an object that does not match its design plan.

For example, the printer is ordered to create an object with half-millimeter in-fill patterns. But the actual object has patterns that vary 5 to 10 percent from the design plan. Like a fingerprint to a person, these patterns are unique and repeatable. As a result, they can be traced back to the 3D printer.

“3D printers are built to be the same. But there are slight variations in their hardware created during the manufacturing process that lead to unique, inevitable and unchangeable patterns in every object they print,” Xu says.

To test PrinTracker, the research team created five door keys each from 14 common 3D printers—10 frequency division multiplexing (FDM) printers and four stereolithography (SLA) printers.

With an inkjet scanner, the researchers created digital images of each key. From there, they enhanced and filtered each image, identifying elements of the in-fill pattern. They then developed an algorithm to align and calculate the variations of each key to verify the authenticity of the fingerprint.

Having created a fingerprint database of the 14 3D printers, the researchers were able to match the key to its printer 99.8 percent of the time. They ran a separate series of tests 10 months later to determine if additional use of the printers would affect PrinTracker’s ability to match objects to their machine of origin. The results were the same.

The team also ran experiments involving keys damaged in various ways to obscure their identity. PrinTracker was 92 percent accurate in these tests.

Xu likens the technology to the ability to identify the source of paper documents, a practice used by law enforcement agencies, printer companies and other organizations for decades. While the experiments did not involve counterfeit goods or firearms, Xu says PrinTracker can be used to trace any 3D-printed object to its printer.

“We’ve demonstrated that PrinTracker is an effective, robust and reliable way that law enforcement agencies, as well as businesses concerned about intellectual property, can trace the origin of 3D-printed goods,” Xu says.

You Might Also Like


Filed Under: 3D printing • additive • stereolithography, Rapid prototyping

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Digitalization made easy: Bridging IT/OT with scalable network infrastructure
  • Apple Rubber custom o-rings for harsh underwater conditions
  • ASMPT chooses Renishaw for high-quality motion control
  • Innovating Together: How Italian Machine Builders Drive Industry Forward Through Collaboration
  • Efficiency Is the New Luxury — and Italy Is Delivering
  • Beyond the Build: How Italy’s Machine Makers Are Powering Smart Manufacturing
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.