Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Lab Discovery Gives Glimpse Of Conditions Found On Other Planets

By University of Edinburgh | January 7, 2016

Share

Scientists have recreated an elusive form of the material that makes up much of the giant planets in our solar system, and the sun.

Experiments have given a glimpse of a previously unseen form of hydrogen that exists only at extremely high pressures – more than 3 million times that of Earth’s atmosphere.

Hydrogen – which is among the most abundant elements in the Universe – is thought to be found in this high-pressure form in the interiors of Jupiter and Saturn.

Researchers around the world have been trying for years to create this form of the element, known as the metallic state, which is considered to be the holy grail of this field of physics. It is believed that this form of hydrogen makes up most of the interiors of Jupiter and Saturn.

The metallic and atomic form of hydrogen, formed at elevated pressures, was first theorised to exist 80 years ago. Scientists have tried to confirm this in lab experiments spanning the past four decades, without success. In this latest study from a team of physicists at the University of Edinburgh, researchers used a pair of diamonds to squeeze hydrogen molecules to record pressures, while analysing their behaviour.

They found that at pressures equivalent to 3.25 million times that of Earth’s atmosphere, hydrogen entered a new solid phase – named phase V – and started to show some interesting and unusual properties. Its molecules began to separate into single atoms, while the atoms’ electrons began to behave like those of a metal.

The team says that the newly found phase is only the beginning of the molecular separation and that still higher pressures are needed to create the pure atomic and metallic state predicted by theory.

The study, published in Nature, was supported by a Leadership Fellowship from the Engineering and Physical Sciences Research Council.

Professor Eugene Gregoryanz, of the University of Edinburgh’s School of Physics and Astronomy, who led the research, said: “The past 30 years of the high-pressure research saw numerous claims of the creation of metallic hydrogen in the laboratory, but all these claims were later disproved. Our study presents the first experimental evidence that hydrogen could behave as predicted, although at much higher pressures than previously thought. The finding will help to advance the fundamental and planetary sciences.”

Source: http://www.eurekalert.org/pub_releases/2016-01/uoe-ldg010616.php


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings