Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

NASA Turns Down the Volume on Rocket Noise Through SLS Scale Model Acoustic Testing

By NASA | June 18, 2014

Share

NASA engineers recently went on an auricle ride as a scale model of the Space Launch System (SLS), including solid rocket motors, was fired – giving an “earful” of information about how low- and high-frequency sound waves will affect the rocket on the launch pad.

View: Photos of the Day: Testing a Mini Model of World’s Largest Rocket

When completed, SLS will be capable of taking a crew and cargo on deep space missions, including to an asteroid and eventually Mars.

“This test is unique because it’s like going through the steps of a true launch, only on a much smaller scale,” said Jeremy Kenny, acoustics engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, where the test series is being conducted. “The noise the engines and boosters generate is so great that it can impact the rocket, and the crew, during liftoff. We have to ensure we have the proper suppression system to basically turn that noise down to a safe level.”

The scale SLS model hosts more than 200 sensors, which take data representative of the predicted SLS acoustic environments. The data collected from the tests will be used to help direct and verify the design of the rocket’s sound suppression system.

Water is the main component of the sound suppression system because it helps protect the launch vehicle and its payload from damage caused by acoustical energy.

“When you’re building the largest rocket in the world, you have to take everything into consideration,” said SLS Chief Engineer Garry Lyles. “Acoustic testing is a very critical part of that. We’re using testing techniques that were highly successful during the space shuttle era, and tailoring them to SLS design specifications. It’s getting us where we need to be for the rocket’s first flight.”

The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system; it is scheduled for 2017. As the SLS evolves, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system to places like Mars.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings