Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Need for Speed: Neutrons Study Fluid Flow for Hypersonic Flight

By Jeremy Rumsey, Oak Ridge National Laboratory | November 6, 2018

Share

One of the grand challenges in aerospace engineering is the development of hypersonic vehicles capable of traveling at or above Mach 5—about 4,000 miles per hour or faster. However, liquid fuel combustion at those speeds and atmospheric conditions is not well understood.

Searching for solutions to supersonic fluid flow behavior, researchers from the University of Tennessee–Knoxville, and the US Air Force are using neutron radiography at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL). The team says a better understanding of spray dynamics will lead to improved fuel injector designs for the aeronautic and automotive industries as well as other spray-related applications used in agriculture, pharmaceuticals and manufacturing.

“In hypersonic systems, when you’re flying at, say, Mach 5, you’re basically flying like 1,000 meters per second, and the fuel has to be sprayed into a supersonic flow, which then has less than a millisecond to burn,” said UT Associate Professor Zhili Zhang. “So we need a nozzle efficient enough to do this; but, unfortunately, there’s no standard nozzle that exists.”

Using the IMAGING beamline CG-1D at ORNL’s High Flux Isotope Reactor, the researchers designed an experiment using different nozzle configurations to study the interior and exterior flow patterns before and just after the spray is dispersed into the combustion chamber. 

Neutrons are ideal for this kind of research because they can see through almost any material in a nondestructive fashion and are sensitive to light elements such as hydrogen and various hydrocarbons used in jet fuel. More specifically, neutron radiography allowed the team look through the metal nozzles and observe the fluid densities and flow pattern behaviors to determine how liquid fuel might flow more effectively with improved designs.

“We’re interested in developing an instrument capability that will enable people to get data on those behaviors. From there we’ll be able to know things about atomization and temperature and other effects that deal with combustion efficiency,” said UT graduate research assistant Cary Smith. “The more we can scientifically understand those things, the better we’ll be able to design efficient nozzles for better combustion.”

HFIR is a DOE Office of Science User Facility. UT-Battelle manages ORNL for DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design
Air Force Jet
How drones are advancing metrology for fighter jets

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings