Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Physicists Look For Ways To Protect Satellites’ Electronic Equipment In Space

By National Research Nuclear University | January 17, 2018

The Department of Micro- and Nano-Electronics at the National Research Nuclear University MEPhI (Russia) has presented a new method of predicting integrated microcircuit failures in outer space. An article on the research has been published by IEEE Transactions on Nuclear Science.

Ensuring the reliable operation of microcircuits in outer space is an important scientific and economic objective. For modern weather, communications and surveillance satellites to be cost-effective, they need to be operational for at least 10 to 15 years. Onboard electronic equipment failures are a common reason for early satellite failure.

Standard electronic equipment used in terrestrial conditions is too unreliable for employment in space. This is why electronic equipment intended for space flights is either manufactured with special materials or is selected and tested in a specific way. All of this calls for specific insight into physical processes in circuits and is what motivates scientists to develop mathematical methods to predict circuit behavior under various conditions.

Of much importance here are so-called single effects, or faults of electronic circuitry caused by high-energy space particles from the Earth’s radiation belts or from the depths of the galaxy. The single fault problem emerged in the early 1980s, when microelectronic components were measured in microns (one-millionth of a meter).

What makes this problem particularly acute is that space-borne electronic equipment cannot be screened from high-energy particles because of their penetration power. To resolve this, methods to predict the frequencies under prescribed conditions were developed as were software- and hardware-based solutions to block the particles.

But technology has changed dramatically in the last 30 years. With circuitry elements reduced to a nanoscale, failures have become more frequent, with just one space particle (e.g., an ion or a proton) capable of causing a fault in a logic chip or a memory cell at once, thus leading to failure or irreversible damage in circuit. It is very hard to mend these failures because of their uncertain multiplicity factor, that is, the number of failures caused by one space particle.

MEPhI researchers have addressed this problem in the last couple of years, coming up with a new methodology that makes it possible to process data from ground-based experiments and program failure frequency calculations. It enables forecasts based on new physical, technological and programming parameters characteristic of nanosize (technological norm lower than 100 nm) cutting-edge integrated circuits.

“The gist of the matter is the non-local nature of impacts: one space particle can affect several elements in integrated circuits. It is this factor and the uncertain multiplicity factor that make it impossible to predict the frequency of failures and fend off faults with the old methods. This problem can become further aggravated as miniaturization technology continues and circuit architecture becomes more complex. This is why we have suggested a methodology to process experimental data and calculate the frequency of faults. This can help differentiate failures by a repetition factor and assess frequencies in prescribed space orbits, doing so quickly and reliably,” said researcher Prof. Gennady Zebrev.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more