Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Robotic solution speeds up PPE manufacturing process

By Mike Santora | May 15, 2022

ultrasonic welding horn on Kawasaki Robotic

The ultrasonic welding horn end effector on the Kawasaki Robotics in this photo was designed by Harbour Technologies.

During the COVID-19 pandemic, the healthcare industry faced a large-scale personal protective equipment (PPE) shortage, putting frontline workers at risk of infection. Seeing this struggle, Ontario-based integrator and tool builder Harbour Technologies pivoted their business to include a new title — PPE manufacturer. Harbour Technologies designed a robotic cell to swiftly manufacture FDA-approved isolation gowns, helping the Canadian government provide more PPE to hospitals across the country. Now, because of their success, Harbour Technologies is setting its sights on providing PPE to the rest of the world.

“It’s tremendously important for Canada to have resilience in manufacturing PPE,” said Harbour Technologies co-owner Andrew Glover. “We saw it firsthand at the beginning of the pandemic when there was a shortage of PPE across North America … especially in Canada.”

Ensuring top quality with automated operations
Level-3 isolation gowns — those used by hospital staff during patient encounters involving blood draws, inserting intravenous lines, emergency and trauma treatment, and surgery — must meet extremely high FDA approval standards. The FDA demands that all areas of the surgical isolation gown except bindings, cuffs, and hems provide the highest liquid barrier protection level for which the gown is rated … necessitating tight quality control during gown manufacture.

Kawasaki Robotic PPE manufacturing cell

“We teamed up with Kawasaki Robotics, which perfectly filled the need with their robots and continuous support,” said Harbour Technologies co-owner David Glover.“We sat with their engineering team, gave them the requirements, and worked together to select the proper robot and platform.”

“We found a lot of PPE was substandard and put frontline workers at risk,” said Glover. In contrast, automated gown production yields quality far superior to anything made manually, added Harbour Technologies co-owner, Andrew Glover. Harbour Technologies’ Kawasaki Robotics-based solution includes an RS050N robot installed to accomplish multiple tasks within the PPE manufacturing cell. The robot uses a tool-changing station to alternate between ultrasonic welding, knife, and gripper tools. It’s a scalable solution that will soon expand to 14 cells between two Harbour Technologies locations in Canada.

For Harbour Technologies, building an intuitive, easy-to-use system was also important — so their employees could operate the system freely. “We wanted to make sure that when an operator starts the machine, it does what it needs to do,” explained David Glover — so anyone can grab the pendant and start operating.

More details on the robotic operation
The robotic cell works like this: large rolls of the gown material are loaded into the cell. Servo-controlled rollers release the amount of material needed to produce one gown … and they can be adjusted on the fly to accommodate different products.

Once the tabletop workspace is covered in material, the Kawasaki Robotics robot goes to a tool-changing station to don a rotary ultrasonic welding horn designed by Harbour Technologies. Using this tool, the robot traces the gown profile to bond the front and back pieces of material together. Next, the robot swaps to a knife tool and traces the same path to cut sealed gown panels, neckties, and waistbands. Then, the robot dons a gripper to grasp the completed gown and set it aside for packing. Harbour
Technologies employees manually pack the gowns for distribution.

Kawasaki Robotic PPE manufacturing cell

Harbour Technologies uses a Kawasaki RS050N robot (with a 50-kg payload and a 2,100 mm reach) customized to satisfy the intricacies of their PPE gown-making application.

Benefits to making the gown in a robotic system abound, according to Andrew Glover — including labor savings and cycle times … as his company can produce a gown a lot faster than what’s being made manually.

Automating gown production provides other advantages. The automated cell enables increased production while boosting product quality. Plus, this cell broadens Harbour Technologies’ business to become a global competitor in this space. What’s more, the company’s growth with robotic PPE manufacturing has created hundreds of jobs in their community.

“There was never PPE manufacturing in Canada at this level. With the robotic systems, it allows us to compete globally, which therefore creates jobs locally that were never there before,” said Andrew Glover. “Throughout Ontario, our productions are employing over 600 people, which was never there prior to the pandemic. Robotics allows us to continue creating jobs and growing in this market.”

Kawasaki Robotics USA Inc.
kawasakirobotics.com

You Might Also Like


Filed Under: Welding • soldering
Tagged With: kawasakirobotics
 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more