Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Army, Industry Partner Win Machine Learning Competition

By Joyce M. Conant, ARL Public Affairs | March 23, 2018

Share

A joint effort between the U.S. Army Research Laboratory and DCS Corporation recently won the Neurally Augmented Image Labelling Strategies, or NAILS challenge, at an international machine learning research competition in Tokyo.

Dr. Vernon Lawhern, ARL mathematical statistician and Amelia J. Solon, DCS scientist, led the joint research project. Other team members included Drs. Brent Lance, ARL and Stephen Gordon, DCS.

The team presented its paper, Deep Learning Approaches for P300 Classification in Image Triage: Applications to the NAILS Task, the 13th National Institute of Testbeds and Community Information Access Research Conference on evaluation of information.

Teams participating in the NAILS challenge developed machine learning methods to detect – through brain activity – whether an image that a person was seeing was a task-relevant image or not. In performing the research, the researchers calibrated an in-house tool called EEGNet, which is a deep convolutional network capable of learning robust representations of specific brain responses using relatively sparse training sets. Using this approach, they trained a unique instantiation of EEGNet for each subject and subsequently obtained the highest classification performance, averaged across all subjects, of the participating teams.

“EEGNet allows researchers to train models for different neural responses using examples of those responses collected under a wide variety of conditions and from multiple individuals,” Gordon said. “In this way, EEGNet provides both a ‘common framework’ for analyzing disparate data sets as well as a tool for extrapolating results from simplified to more complex domains.”

The team participated in conference discussions focused on the state of brain computer interface technology and how it can be leveraged for information retrieval applications; future directions for the NAILS task; assessing models with IR oriented evaluation metrics; and encouraging the development of general BCI algorithms that are not calibrated per-subject or task and hold greater potential for measuring human state in complex, real-world environments.

“This work is part of a larger research program at ARL that focuses on understanding the principles that govern the application of neuroscience-based research to complex operational settings,” Lawhern said. “By competing in this competition we were able to showcase our expertise in this area to the broader scientific community. Ultimately, we are interested in using neuroscience-based approaches to develop human-computer interaction technologies that can adapt to the state of the user.”

The researchers conducted the work as part of DCS’s Cognition and Neuroergonomics Collaborative Technology Alliance contract with ARL. The CaN CTA is the U.S. Army’s flagship basic science research and technology transition program in the neurosciences.

More information on the winning research is available on Google Scholar Citations (see related links).


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings