Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Sensors Detect Icing Conditions to Help Protect Airplanes

By NASA | February 20, 2015

Share

When ice accumulates on the surface of an aircraft during flight, it distorts the smooth flow of air necessary to stay aloft.  The result is a reduction in lift, which can lead to stalls and crashes.  Knowing about hazardous icing conditions in advance helps pilots, air traffic controllers and airline dispatchers navigate airplanes and passengers away from danger. 

However, icing conditions can vary wildly within the same airspace.  That’s why scientists at NASA’s Glenn Research Center are advancing the methods, technology and accuracy of sensor systems to provide better detection of potential icing hazards around the nation’s airports. 

A ground-based station developed at Glenn includes sophisticated instruments such as a Ka-band cloud radar, which reads particle density distribution; a multi-frequency microwave radiometer that provides vertical temperature and water vapor profiles and a measure of liquid water present aloft; and a ceilometer for refined cloud base measurements. 

“Our goal is to improve the tools and data that controllers and dispatchers need to make tactical decisions,” says Aerospace Engineer Andrew Reehorst, who leads Glenn’s icing remote sensor program.  

Recently, Reehorst’s team initiated a weather balloon campaign to read and calibrate weather data, and validate the ground-based sensors.  Aerospace Engineer Michael King is releasing a series of weather balloons over the winter months from the center’s aircraft hangar ramp.

The weather balloons are fitted with an instrument package to measure pressure, temperature, humidity, and most importantly, supercooled liquid water content.  When an airplane comes into contact with supercooled water, it attaches to the surface as ice.  As it builds up, airframes are compromised.

“The balloons typically rise to an altitude of 60,000 feet,” says King.  “An instrumented vibrating wire is exposed to the supercooled water, which accretes as ice to the wire on contact. From the decrease in the wire’s natural frequency, we can calculate the amount of supercooled liquid water aloft.”

The balloon campaign is part of an on-going effort by the center’s icing researchers to field test and develop products for disseminating icing hazard information to flight crews.  An experimental web-based system, currently available only to researchers, provides real-time, raw sensor data to provide a profile of conditions aloft. As the software, computers and sensors are refined, the aircraft community will benefit from access to better information for making critical decisions for overall safety.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings