Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Then & Now: Cryogenic Testing from 1964 to Present

By NASA | December 1, 2015

Share

Image credit: NASA

The men in this photo from 1964 are not on a trip through the Arctic wilderness – in fact, they’re inside a facility at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

They bundled up in furs and ski masks to work in a small cryogenic chamber called the Low Temperature Optical Facility (LTOF). The chamber was built at Goddard in the 1960s to test the optics of the Orbiting Astronomical Observatories.

Cryogenic testing helped ensure the spacecraft components could survive the chill of their low-Earth orbit. The spacecraft were some of James Webb Space Telescope’s earliest predecessors, predating the Hubble Space Telescope by about 20 to 25 years.

The spacecraft were developed to increase awareness of the benefits to the scientific community of using orbiting telescopes. James Webb Space Telescope is the successor to the Hubble Space Telescope and is slated to launch in 2018.

Webb telescope components will undergo a similar testing process at Goddard in the coming months, but no winter gear will be required this time.

The LTOF only reached minus 76 degrees Fahrenheit (F), but the current 40-foot cryogenic vacuum chamber, known as the Space Environment Simulator, reaches temperatures as low as minus 434 F. Webb will orbit a million miles from Earth, a much colder environment than the OAO spacecraft were exposed to in low-Earth orbit.

It won’t be possible for employees to enter the thermal vacuum chamber to work during the test, both due to the lack of air in the chamber and because of the low temperatures.

Webb will observe distant objects in infrared wavelengths. Everything that is above absolute zero, or minus 459 F – including telescopes – emits thermal radiation, or heat, detectable in the infrared.

To avoid swamping faint infrared signals with the observatory’s own heat, the telescope must operate at extremely cold temperatures. Cryogenic testing will simulate that environment and ensure the hardware will function at these low temperatures.

Webb’s “pathfinder” telescope just successfully completed its second super-cold optical test.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings