Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

3D Printer Makes Peacekeeping Missions Cheaper and Repair of Defense Systems Faster

By Eindhoven University of Technology | May 17, 2019

Share

Peacekeeping missions often take place at remote locations, requiring the army to have a large supply of spare parts on site to keep everything running. Dutch researcher Bram Westerweel comes to the conclusion that taking a 3D printer on a mission to print parts can save hundreds of thousands of euros and, at the same time, reduce the downtime of defense equipment. The savings on operational costs sometimes total more than half. The findings of Westerweel, who received his Ph.D. yesterday, can also be applied to industries with remote locations, such as the offshore industry.

Quick return on investment

The army’s systems have many thousands of types of spare parts. Based on his research, Westerweel expects that a total of 10-20 percent of the components of the armed forces can be made by additive manufacturing, also known as 3D printing. The total savings by 3D printing on relatively large peacekeeping missions like the ones in Mali and Sudan, could then run up to hundreds of thousands. The printer itself costs a one-off €25,000, making for a quick return on investment. The Dutch army is already experimenting with such a printer in Mali.

Simply too expensive

Westerweel’s research took a broader perspective of the possibilities of including 3D printers in the logistics chain of supplying spare parts. Such logistics are not easy, especially for complex technical systems on remote locations. 3D printers are sometimes seen as the definitive solution: zero stock, just a printer that makes parts on demand. However, Westerweel’s work shows that this is often not feasible. In many cases it is simply too expensive to shut down a technical system until a new part has been printed. In these cases, parts must be ‘on the shelf’ so that they can be replaced immediately.

Printing hubs

Far-reaching efficiency does seem possible via a new business model, which Westerweel also investigated. This business model is based on equipment builders shifting from selling and shipping physical parts, to selling licenses for digital design files that allow others, anywhere in the world, to print parts locally. Such licensing of intellectual property also allows the supply chain to completely decentralize, with traditional mass-manufacturing facilities being replaced by local printing hubs that can simply download component designs from central servers.


Filed Under: Aerospace + defense, 3D printing • additive manufacturing • stereolithography, Rapid prototyping

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings